Sains Malaysiana 54(8)(2025): 1913-1925

http://doi.org/10.17576/jsm-2025-5408-04

 

Non-Halal Gelatin Prediction: A Comparative Machine Learning Analysis between OPLSDA and ANN Models (Ramalan Gelatin Tidak Halal: Perbandingan Analisis Pembelajaran Mesin antara Model OPLS-DA dan ANN)

 

MOHD HAFIS YUSWAN1,*, NORAZLINA ALI2, SYAIFUL IZWAN ISMAIL2, BASYIRAH MUDA2, MOHAMAD HABEEB HELMY IDRIS2, MAZIDAH MD NOR2, NUR SUHADAH NAWI2, MUHAMAD SHIRWAN ABDULLAH SANI3 & LAI KOK SONG4

 

1Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Malaysia Halal Analysis Centre (MyHAC), Department of Islamic Development Malaysia, No. 1 Persiaran Teknologi 1, Lebuh Enstek, 71760 Bandar Baru Enstek, Negeri Sembilan, Malaysia

3International Institute for Halal Research and Training, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia

4Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, United Arab Emirates

 

Received: 17 February 2025/Acccepted: 23 June 2025

 

Abstract

Gelatin is derived from animal collagen, sourced primarily from bovine or porcine, and finds widespread application within the food industry. These issues raise concern over its halal status, particularly among Muslims and Jews, as they adhere to dietary laws prohibiting the consumption of pork and its derivatives. Conventional methods like quantitative Polymerase Chain Reaction (qPCR) and liquid chromatography–mass spectrometry (LC–MS) have limitations due to the deoxyribonucleic acid (DNA)’s reliability and the gelatin's complex composition, respectively. Therefore, this study aimed to explore the application of artificial intelligence (AI)based machine learning, focusing on amino acid composition for non-halal gelatin prediction. A set of 3,780 data points enabled the analysis of the chromatographic peak areas of 18 amino acids in 210 gelatin samples. Orthogonal partial least squares discriminant analysis (OPLS–DA) and artificial neural network (ANN) compared their performance in machine learning models. The ANN employed resilient backpropagation algorithms that demonstrated high accuracy (98.5%) and regression (R2) of 0.913, with a slightly higher Root Mean Square Error (RMSE) of 0.244. However, OPLSDA demonstrated the best accuracy (100%), R2 of 0.997, and lower RMSE (0.130) compared to the ANN model. The ANN's robustness against outliers and direct output results provided practical advantages, while OPLS–DA offered comprehensive insights and robust discrimination. This study demonstrates the potential of AI-based machine learning in non-halal gelatin prediction, with both models showing the same capability. These findings can be integrated with existing analytical methods to complement the halal analysis, thus ensuring product integrity and upholding halal sanctity.

Keywords: Artificial neural network; gelatin; halal; machine learning; OPLSDA

 

Abstrak

Gelatin diperoleh daripada kolagen haiwan dan biasanya diperoleh daripada lembu atau khinzir. Gelatin ini digunakan secara meluas dalam industri makanan. Hal ini menimbulkan kebimbangan mengenai status halal, terutamanya dalam kalangan umat Islam dan Yahudi, kerana mereka terikat kepada undang-undang pemakanan yang melarang pengambilan daging babi dan sumbernya. Kaedah analisis seperti tindak balas rantaian polimerase kuantitatif (qPCR) dan kromatografi cecair–spektrometri jisim (LC–MS) mempunyai had kerana kebolehpercayaan asid deoksiribonukleik (DNA) dan komposisi gelatin yang kompleks. Oleh itu, kajian ini bertujuan untuk meneroka penggunaan pembelajaran mesin berasaskan kecerdasan buatan (AI), dengan memberi tumpuan kepada komposisi asid amino untuk ramalan gelatin tidak halal. Set data yang terdiri daripada 3,780 data membolehkan analisis kawasan kromatografi bagi 18 asid amino dalam 210 sampel gelatin. Analisis diskriminan–kuasa dua separa ortogonal (OPLS–DA) dan rangkaian saraf tiruan (ANN) membandingkan prestasi masing-masing dalam model pembelajaran mesin. ANN menggunakan algoritma perambatanbalik yang menunjukkan ketepatan tinggi (98.5%) dan regresi (R2) 0.913 dengan Ralat Purata Punca Kuasa Dua (RMSE) yang sedikit lebih tinggi iaitu 0.244. Walau bagaimanapun, OPLSDA menunjukkan ketepatan terbaik (100%), R2 (0.997) dan RMSE yang lebih rendah (0.130) berbanding model ANN. Ketahanan ANN terhadap pencilan dan hasil langsung memberikan kelebihan praktikal, manakala OPLS–DA memberikan pandangan yang komprehensif dan diskriminasi yang kukuh. Kajian ini menunjukkan potensi pembelajaran mesin berasaskan AI dalam ramalan gelatin tidak halal dengan kedua-dua model menunjukkan keupayaan yang sama. Penemuan ini boleh digabungkan dengan kaedah analisis sedia ada untuk melengkapkan analisis halal, justeru memastikan integriti produk dan memelihara kesucian halal.

Kata kunci: Gelatin; halal; pembelajaran mesin; pengesahan daging; rantaian saraf tiruan; OPLSDA

 

REFERENCES

Abdullah Sani Ahmad, M.I., Li, Y., Pan, J., Liu, F., Dai, H., Fu, Y., Huang, T., Farooq, S. & Zhang, H. 2024. Collagen and gelatin: structure, properties, and applications in food industry. International Journal of Biological Macromolecules 254(3): 128037. https://doi.org/10.1016/j.ijbiomac.2023.128037

Ali, E., Sultana, S., Abd Hamid, S.B., Hossain, M., Yehya, W.A., Kader, A. & Bhargava, S.K. 2018. Gelatin controversies in food, pharmaceuticals, and personal care products: Authentication methods, current status, and future challenges. Critical Reviews in Food Science and Nutrition 58(9): 1495-1511.

Amira Aqilah, S., Nur Azira, T., Haizatul Hadirah, G., Nurul Azarima, M.A. & Siti Nur Syahirah, Z. 2019. Analytical methods for gelatin differentiation. Journal of Halal Industry & Services 2(1): a0000048. http://www.journals.hh-publisher.com/index.php/JHIS/article/view/57

Bhagya Raj, G.V.S. & Dash, K.K. 2022. Comprehensive study on applications of artificial neural network in food process modeling. Critical Reviews in Food Science and Nutrition 62(10): 2756-2783. https://doi.org/10.1080/10408398.2020.1858398

Boccard, J. & Rutledge, D.N. 2013. A consensus orthogonal partial least squares discriminant analysis (OPLS-DA) strategy for multiblock omics data fusion. Analytica Chimica Acta 769: 30-39. https://doi.org/10.1016/j.aca.2013.01.022

Chang, L., Mu, G., Wang, M., Zhao, T., Tuo, Y., Zhu, X. & Qian, F. 2022. Microbial diversity and quality-related physicochemical properties of spicy cabbage in Northeastern China and their correlation analysis. Foods 11(10): 1511. https://doi.org/10.3390/foods11101511

Gbashi, S., Maselesele, T.L., Njobeh, P.B., Molelekoa, T.B.J., Oyeyinka, S.A., Makhuvele, R. & Adebo, O.A. 2023. Application of a generative adversarial network for multi-featured fermentation data synthesis and artificial neural network (ANN) modeling of bitter gourd–grape beverage production. Scientific Reports 13(1): 11755. https://doi.org/10.1038/s41598-023-38322-3

Gonçalves Neto, J., Ozorio, L.V., Campos de Abreu, T.V., dos Santos, B.F. & Pradelle, F. 2021. Modeling of biogas production from food, fruits and vegetables wastes using artificial neural network (ANN). Fuel 285: 119081. https://doi.org/10.1016/j.fuel.2020.119081

Guiné, R.P.F. 2019. The use of artificial neural networks (ANN) in food process engineering. International Journal of Food Engineering 5(1): 15-21. https://doi.org/10.18178/ijfe.5.1.15-21

Hang, J., Shi, D., Neufeld, J., Bett, K.E. & House, J.D. 2022. Prediction of protein and amino acid contents in whole and ground lentils using near-infrared reflectance spectroscopy. LWT 165: 113669. https://doi.org/10.1016/j.lwt.2022.113669

Jadhav, S.R., Shah, R.M., Karpe, A.V., Barlow, R.S., McMillan, K.E., Colgrave, M.L. & Beale, D.J. 2021. Utilizing the food-pathogen metabolome to putatively identify biomarkers for the detection of shiga toxin-producing E. coli (stec) from spinach. Metabolites 11(2): 67. https://doi.org/10.3390/metabo11020067

Jameel, A.M. & Al-Salami, Q.H. 2023. Principal component analysis technique for finding the best applicant for a job. Cihan University-Erbil Journal of Humanities and Social Sciences 7(1): 121-125. https://doi.org/10.24086/cuejhss.v7n1y2023.pp121-125

Jannat, B., Ghorbani, K., Shafieyan, H., Kouchaki, S., Behfar, A., Sadeghi, N., Beyramysoltan, S., Rabbani, F., Dashtifard, S. & Sadeghi, M. 2018. Gelatin speciation using real-time PCR and analysis of mass spectrometry-based proteomics datasets. Food Control 87: 79-87. https://doi.org/10.1016/j.foodcont.2017.12.006

Kleinnijenhuis, A.J., van Holthoon, F.L. & Herregods, G. 2018. Validation and theoretical justification of an LC-MS method for the animal species specific detection of gelatin. Food Chemistry 243: 461-467. https://doi.org/10.1016/j.foodchem.2017.09.104

Liu, K., Jin, Y., Gu, L., Li, M., Wang, P., Yin, G., Wang, S., Wang, T., Wang, L. & Wang, B. 2023. Classification and authentication of Lonicerae japonicae flos and Lonicerae flos by using 1H-NMR spectroscopy and chemical pattern recognition analysis. Molecules 28(19): 6860. https://doi.org/10.3390/molecules28196860

Liu, X. & Locasale, J.W. 2017. Metabolomics reveals intratumor heterogeneity - Implications for precision medicine. EBioMedicine 19: 4-5. https://doi.org/10.1016/j.ebiom.2017.04.030

Mavani Nidhi Rajesh, Jarinah Mohd Ali, Suhaili Othman, M.A. Hussain, Haslaniza Hashim & Norliza Abd Rahman. 2022. Application of artificial intelligence in food industry - A guideline. Food Engineering Reviews 14: 134-175. https://doi.org/10.1007/s12393-021-09290-z

Milovanovic, I. & Hayes, M. 2018. Marine gelatine from rest raw materials. Applied Sciences 8(12): 2407.

Muhamad Shirwan Abdullah Sani, Azilawati Mohd Ismail, Azman Azid & Mohd Saiful Samsudin. 2021. Establishing forensic food models for authentication and quantification of porcine adulterant in gelatine and marshmallow. Food Control 130: 108350. https://doi.org/10.1016/j.foodcont.2021.108350

Oliveri, P., Malegori, C., Mustorgi, E. & Casale, M. 2021. Qualitative pattern recognition in chemistry: Theoretical background and practical guidelines. Microchemical Journal 162: 105725. https://doi.org/10.1016/j.microc.2020.105725

Sarker, I.H. 2021. Machine learning: Algorithms, real-world applications and research directions. SN Computer Science 2: 160. https://doi.org/10.1007/s42979-021-00592-x

Stangierski, J., Weiss, D. & Kaczmarek, A. 2019. Multiple regression models and artificial neural network (ANN) as prediction tools of changes in overall quality during the storage of spreadable processed gouda cheese. European Food Research and Technology 245(11): 2539-2547. https://doi.org/10.1007/s00217-019-03369-y

Uddin, S.M.K., Motalib Hossain, M.A., Sagadevan, S., Al Amin, Md. & Johan, M.R. 2021. Halal and kosher gelatin: Applications as well as detection approaches with challenges and prospects. Food Bioscience 44(PA): 101422. https://doi.org/10.1016/j.fbio.2021.101422

Wang, Y., Wang, X., Huang, Y., Yue, T. & Cao, W. 2023. Analysis of volatile markers and their biotransformation in raw chicken during Staphylococcus aureus early contamination. Foods 12(14): 2782. https://doi.org/10.3390/foods12142782

Tsuchiya, Y. & Tomii, K. 2020. Neural networks for protein structure and function prediction and dynamic analysis. Biophysical Reviews 12(2): 569-573. https://doi.org/10.1007/s12551-020-00685-6

Yuswan, M.H., A. Jalil, N.H., Mohamad, H., Keso, S., Mohamad, N.A., Tengku Md. Yusoff, T.S., Ismail, N.F., Abdul Manaf, Y.N., Mohd Hashim, A., Mohd Desa, M.N., Yusof, Y.A. & Mustafa, S. 2021. Hydroxyproline determination for initial detection of halal-critical food ingredients (gelatin and collagen). Food Chemistry 337: 127762. https://doi.org/10.1016/j.foodchem.2020.127762

Zhang, R-Z., Zhao, J.T., Wang, W.Q., Fan, R.H., Rong, R., Yu, Z.G. & Zhao, Y.L. 2022. Metabolomics-based comparative analysis of the effects of host and environment on Viscum coloratum metabolites and antioxidative activities. Journal of Pharmaceutical Analysis 12(2): 243-252. https://doi.org/10.1016/j.jpha.2021.04.003

Zheng, H., Jiang, L., Lou, H., Hu, Y., Kong, X. & Lu, H. 2011. Application of artificial neural network (ANN) and partial least-squares regression (PLSR) to predict the changes of anthocyanins, ascorbic acid, total phenols, flavonoids, and antioxidant activity during storage of red bayberry juice based on fractal analysis and red, green, and blue (RGB) intensity values. Journal of Agricultural and Food Chemistry 59(2): 592-600. https://doi.org/10.1021/jf1032476

 

*Corresponding author; email: hafisyuswan@upm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next